Invariance of distributional chaos for backward shifts

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Weakest Version of Distributional Chaos

The aim of the paper is to correct and improve some results concerning distributional chaos of type 3. We show that in a general compact metric space, distributional chaos of type 3, denoted DC3, even when assuming the existence of an uncountable scrambled set, is a very weak form of chaos. In particular, (i) the chaos can be unstable (it can be destroyed by conjugacy), and (ii) such an unstabl...

متن کامل

Evaluating distributional shifts in home range estimates

A variety of methods are commonly used to quantify animal home ranges using location data acquired with telemetry. High-volume location data from global positioning system (GPS) technology provide researchers the opportunity to identify various intensities of use within home ranges, typically quantified through utilization distributions (UDs). However, the wide range of variability evident with...

متن کامل

Chaos for Power Series of Backward Shift Operators

We study when the operator f(Bw) is chaotic in the sense of Devaney on a Köthe echelon sequence space, where Bw is a weighted backward shift and f(z) = ∑∞ j=0 fjz j is a formal power series.

متن کامل

Invariance Principles for Homogeneous Sums: Universality of Gaussian Wiener Chaos

We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. Our techniques combine an invariance principle by Mossel, O’Donnell and Oleszkiewicz with a refinement of some recent results by Nourdin and Peccati, about the approximation of laws of random variables bel...

متن کامل

Quasi-invariance for Lévy processes under anticipating shifts

The Cameron-Martin theorem [5] gives the density with respect to the Wiener measure of a deterministic shift of Brownian motion. Similarly, the Skorokhod theorem on invariance of measures [18] gives the density with respect to Poisson measures of deterministic shifts of configuration. These theorems have an extension (the Girsanov theorem) to random shifts under adaptedness hypothesis. Given a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2020

ISSN: 1846-3886

DOI: 10.7153/oam-2020-14-01